Where the linearized Poisson-Boltzmann cell model fails: (I) spurious phase separation in charged colloidal suspensions

نویسنده

  • M. N. Tamashiro
چکیده

We perform a linearization of the Poisson-Boltzmann (PB) density functional for spherical WignerSeitz cells that yields Debye-Hückel-like equations agreeing asymptotically with the PB results in the weak-coupling (high-temperature) limit. Both the canonical (fixed number of microions) as well as the semi-grand-canonical (in contact with an infinite salt reservoir) cases are considered and discussed in a unified linearized framework. In the canonical case, for sufficiently large colloidal charges the linearized theory predicts the occurrence of a thermodynamical instability with an associated phase separation of the homogeneous suspension into dilute (gas) and dense (liquid) phases. In the semi-grand-canonical case it is predicted that the isothermal compressibility and the osmotic-pressure difference between the colloidal suspension and the salt reservoir become negative in the low-temperature, high-surface charge or infinite-dilution (of polyions) limits. As already pointed out in the literature for the latter case, these features are in disagreement with the exact nonlinear PB solution inside a Wigner-Seitz cell and are thus artifacts of the linearization. By using explicitly gauge-invariant forms of the electrostatic potential we show that these artifacts, although thermodynamically consistent with quadratic expansions of the nonlinear functional and osmotic pressure, may be traced back to the non-fulfillment of the underlying assumptions of the linearization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge - stabilized colloidal suspensions . Phase behavior and effects of confinement *

The Poisson–Boltzmann (PB) equation is used to investigate effective colloid-interface interactions and the phase behavior of charge-stabilized colloidal suspensions. When a colloidal particle, immersed in an electrolyte, approaches an interface, which may be neutral (such as air) or charged (like electrodes, glass, etc.), image charge effects plus the deformation of the colloidal ion atmospher...

متن کامل

Osmotic pressure of charged colloidal suspensions: a unified approach to linearized Poisson-Boltzmann theory.

We study theoretically the equation of state of a fluid suspension of charged objects (e.g., colloids, polyelectrolytes, clay platelets, etc.) dialyzed against an electrolyte solution using the cell model and linear Poisson-Boltzmann (PB) theory. From the volume derivative of the grand potential functional of linear theory we obtain two expressions for the osmotic pressure in terms of the poten...

متن کامل

Nonlinear screening and gas-liquid separation in suspensions of charged colloids.

We calculate phase diagrams of charged colloidal spheres (valency Z and radius a) in a 1:1 electrolyte from multicentered nonlinear Poisson-Boltzmann theory. Our theory takes into account charge renormalization of the colloidal interactions and volume terms due to many-body effects. For valencies as small as Z = 1 and as large as 10(4) we find a gas-liquid spinodal instability in the colloid-sa...

متن کامل

Where the linearized Poisson-Boltzmann cell model fails: the planar case as a prototype study.

The linearized Poisson-Boltzmann (PB) approximation is investigated for the classical problem of two infinite, uniformly charged planes in electrochemical equilibrium with an infinite monovalent salt reservoir. At the nonlinear level, we obtain an explicit expression of the associated electrostatic contribution to the semi-grand-canonical potential. The linearized osmotic-pressure difference be...

متن کامل

Phase coexistence in colloidal suspensions: an analytic Poisson-Boltzmann treatment.

We solve the linearized Poisson-Boltzmann equation analytically, subject to justifiable approximations, for a suspension containing a large number of identical spherical macroions under conditions of constant surface charge and zero added salt, in order to investigate the phase behavior of charge-stabilized colloidal suspensions. Our results for the electrostatic part of the Helmholtz free ener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002